

RELATIVE ANALYSIS OF SOFTWARE COST AND EFFORT ESTIMATION

TECHNIQUES

BHAWANA SRIVASTAVA
1
 & MANOJ WADHWA

2

1
Assistant Professor, Department of Computer Science and Engineering, Echelon Institute of Technology, Faridabad, India

2
Professor & HOD, Department of Computer Science and Engineering, Echelon Institute of Technology, Faridabad, India

ABSTRACT

Software effort estimation is a very critical task in the software engineering and to control quality and efficiency a

suitable estimation technique is crucial. This paper gives a comparative analysis of various available software effort

estimation techniques. These techniques can be widely categorised under algorithmic model, non-algorithmic model,

parametric model, and machine learning models. The use of a model that accurately calculates the cost and effort of

developing a software product can be a key to the success of whole development project. This paper presents a detailed

analysis of several existing methods for software cost estimation. No single technique is best for all situations, and thus a

careful comparison of the results of several approaches is most likely to produce realistic estimate.

KEYWORDS: Software Cost Estimation, Delphi, Software Effort Estimation, COCOMO, Parametric Model, Machine

Learning

INTRODUCTION

Software effort estimation is one of the most critical and complex, but a key activity in the software development

processes. Over the last three decades, a growing trend has been observed in using variety of software effort estimation

models in diversified software development processes. It is realized that the importance of all these models lies in

estimating the software development costs and preparing the schedules more quickly and easily in the anticipated

environments. A great amount of research time and money have been devoted to improving accuracy of the various

estimation models. There is no proof on software cost estimation models to perform consistently accurate within 25% of

the actual cost and 75% of the time. The accuracy of the individual models decides their applicability in the projected

environments, whereas the accuracy can be defined based on understanding the calibration of the software data.

Since the precision and reliability of the effort estimation is very important for the competitiveness of software

companies, the enterprises and researchers have put their maximum effort to develop the accurate models to estimate effort

near to accurate levels. Many estimation models have been proposed and can be categorized based on their basic

formulation schemes; estimation by Non-algorithm methods expert [6], analogy based estimation schemes [6], algorithmic

methods SLOC, FPA, COCOMO, SEER, SLIM including Machine Learning models like artificial neural network based

approaches and fuzzy logic based estimation schemes. Accurate effort and cost estimation of software applications

continue to be a critical issue for software project managers. Hence there are no best estimation methods for all different

environments; they depend upon specific environment available.

ESTIMATION TECHNIQUES

Generally, there are many methods for software cost estimation, which are divided into four categories:

Algorithmic, Non-Algorithmic, Parametric and Machine learning models. All categories is required for performing the

International Journal of Computer Science

and Engineering (IJCSE)

ISSN 2278-9960

Vol. 2, Issue 3, July 2013, 53-68

© IASET

54 Bhawana Srivastava & Manoj Wadhwa

accurate estimation. If the requirements are known better, their performance will be better. In this section, some popular

estimation methods are discussed.

Algorithmic Models

These models usually need data at first and make results by using the mathematical relations. Nowadays, many

software estimation methods use these models. Algorithmic Models are classified into some different models like:

Source Line of Code: SLOC is an estimation parameter that illustrates the number of all commands and data definition but

it does not include instructions such as comments, blanks, and continuation lines. After computing the SLOC for software,

its amount is compared with other projects which their SLOC has been computed before, and the size of project is

estimated. Thousand Lines of Code (KSLOC) are used for estimation in large scale. SLOC Measuring seems very difficult

at the early stages of the project because of the lack of information about requirements.

Since SLOC is computed based on language instructions, comparing the size of software which uses different

languages is too hard. Anyway, SLOC is the base of the estimation models in many complicated software estimation

methods. SLOC usually is computed by

S = (SOPT+4SM+SPESS)/6

Where , S = Estimated size, SOPT = Optimistic Value, SM = Most likely Value, SPESS = Pessimistic Value

Function Point Analysis: Measuring software size in terms of line of code is analogous to measuring a car stereo by the

number of registers, capacitors and integrated circuits involved in its production. At first, Alan Albrecht while working for

IBM, recognized the problem in size measurement, and developed the technique which is called Function Point Analysis,

which appeared to be a solution to the size measurement problem to measure the functionality of project. In this method,

estimation is done by determination of below indicators:

 User Inputs: information entering the system.

 User Outputs: information leaving the system.

 Logic Files: information held within the system.

 Enquiries: requests for instant access to information.

 Interfaces: information held by other systems that are used by the system being analyzed.

Table 1: Functional Units and Weighting Factors

Functional

Units

Weighting Factors

Simple Medium Complex

User Inputs 3 4 6

User Outputs 4 5 7

Logic files 3 4 6

Enquiries 7 10 15

Interfaces 5 7 10

At first, the number of each mentioned indicator should be tallied and then complexity degree and weight are

multiplied by each other. Generally, the unadjusted function point count is defined as below:

UFC= 𝐍𝐢𝐣𝐖𝐢𝐣𝟑
𝒋=𝟏

𝟓
𝒊=𝟏

where Nij is the number of indicator i with complexity j and; Wij is the weight of indicator i with complexity j.

Relative Analysis of Software Cost and Effort Estimation Techniques 55

According to the previous experiences, function point could be useful for software estimations because it could be

computed based on requirement specification in the early stages of project. To compute the FP, UFC should be multiplied

by a Technical Complexity Factor (TCF) which is obtained from the components in Table 1.

Table 2: Technical Complexity Factor Components

F1 Reliable back-up and recovery F8 Data communications

F2 Distributed functions F9 Performance

F3 Heavily used configuration F10 Online data entry

F4 Operational ease F11 Online update

F5 Complex interface F12 Complex processing

F6 Reusability F13 Installation ease

F7 Multiple sites F14 Facilitate change

Each component can change from 0 to 5 and 0 indicate that the component has no effect on the project and the

component is compulsory and very important respectively. Finally, the TCF is calculated as:

TCF = 0.65+0.01((𝐅𝐢))

The range of TCF is between 0.65 (if all Fi are 0) and 1.35 (if all Fi are 5). Ultimately, Function Point is

computed as:

FP=UFC*TCF

Seer-Sem (Software Evaluation and Estimation of Resources - Software Estimating Model): SEER-SEM model has

been proposed in 1980 by Galorath Inc (Galorath, 2006). Most parameters in this method are commercial and, business

projects usually use SEER-SEM as their main estimation method. Size of the software is the most important feature in this

method and a parameter namely Se is defined as effective size.

SEER-SEM has two main limitations on effort estimation:

First, there are over 50 input parameters related to the various factors of a project, which increases the complexity

of SEER-SEM, especially for managing the uncertainty from these outputs.

Second, the specific details of SEER-SEM increase the difficulty of discovering the nonlinear relationship

between the parameter inputs and the corresponding outputs. Overall, these two major limitations can lead to a lower

accuracy in effort estimation by SEER-SEM.

Se is computed by determining the five indicators : newsize, existingsize, reimpl and retest as below:

Se=Newsize+ExistingSize(0.4Redesign+0.25r eimp+0.35Retest)

After computing the Se the estimated effort is calculated as below:

Effort=D
0.4

 *
𝑺𝒆

𝑪𝒕𝒆
 1.2

Where,

 Se is effective size - introduced earlier

 Cte is effective technology - a composite metric that captures factors relating to the efficiency or productivity with

which development can be carried out. An extensive set of people, process, and product parameters feed into the

effective technology rating. A higher rating means that development will be more productive

56 Bhawana Srivastava & Manoj Wadhwa

 D is staffing complexity - a rating of the project's inherent difficulty in terms of the rate at which staff are added to

a project.

Once effort is obtained, duration is solved using the following equation:

Td=D
-0.2

* 𝑺𝒆/𝑪𝒕𝒆 .4

This equation relates the effective size of the system and the technology being applied by the developer to the

implementation of the system. The technology factor is used to calibrate the model to a particular environment. This factor

considers two aspects of the production technology – technical and environmental.

Cost Estimation Model: Early cost model were linear but it has been shown there is no clear linear relationship between

effort and size.

Later cost models were generally based on the following non-linear formula:

E = (a + b*(SIZE
c
)) * f(x1 . . . , xn)

Base formula correction (depends on the value of entities (x1, . . . xn)

Where,

E = effort a, b and c are derived constants and x 1 to xn are influencing factors which vary from project to project.

There are three forms of the COnstructive COst MOdel :

 Basic CoCoMo which gives an initial rough estimate of man months and development time,

 Intermediate CoCoMo which gives a more detailed estimate for small to medium sized projects,

 Detailed CoCoMo which gives a more detailed estimate for large projects.

Figure 1: Types of COCOMO Model

DEVELOPMENT MODES

There are three modes of development:

 Organic Mode

o Relatively Small, Simple Software projects.

o Small teams with good application experience work to a set of less than rigid requirements.

o Similar to previously developed projects.

Relative Analysis of Software Cost and Effort Estimation Techniques 57

o Relatively small and require little innovation.

 Semidetached Mode

o Intermediate (in size and complexity) software projects in which teams with mixed experience levels

must meet a mix of rigid and less than rigid requirements.

 Embedded Mode

o Software projects that must be developed within set of tight hardware, software and operational

Constraints.

 Basic COCOMO: Basic COCOMO (Constructive Cost Model) is an empirical estimation scheme proposed in

1981 [29] as a model for estimating effort, cost, and schedule for software projects. It was derived from the large

data sets from 63 software projects ranging in size from 2,000 to 100,000 lines of code, and programming

languages ranging from assembly to PL/I. These data were analyzed to discover a set of formulae that were the

best fit to the observations. These formulae link the size of the system and Effort Multipliers (EM) to find the

effort to develop a software system. In COCOMO 81, effort is expressed as Person Months (PM) and it can be

calculated as

PM= a* Size
b
* 𝑬𝑴𝒊𝟏𝟓

𝒊=𝟏

where,

“a” and “b” are the domain constants in the model. It contains 15 effort multipliers. This estimation scheme

accounts the experience and data of the past projects, which is extremely complex to understand and apply the same. Cost

drives have a rating level that expresses the impact of the driver on development effort, PM. These rating can range from

Extra Low to Extra High. For the purpose of quantitative analysis, each rating level of each cost driver has a weight

associated with it. The weight is called Effort Multiplier. The average EM assigned to a cost driver is 1.0 and the rating

level associated with that weight is called Nominal.

 COCOMO II: In 1997, an enhanced scheme for estimating the effort for software development activities, which

is called as COCOMO II. In COCOMO II, the effort requirement can be calculated as:

PM= a* Size
b
* 𝑬𝑴𝒊𝟏𝟕

𝒊=𝟏

Where,

E=B+0.01* 𝐒𝐅𝐣𝟓
𝐣=𝟏

COCOMO II is associated with 31 factors; LOC measure as the estimation variable, 17 cost drives, 5 scale factors,

3 adaptation percentage of modification, 3 adaptation cost drives and requirements & volatility. Cost drives are used to

capture characteristics of the software development that affect the effort to complete the project. COCOMO II used 31

parameters to predict effort and time [11] [12] and this larger number of parameters resulted in having strong co-linearity

and highly variable prediction accuracy. Besides these meritorious claims, COCOMO II estimation schemes are having

some disadvantages. The underlying concepts and ideas are not publicly defined and the model has been provided as a

black box to the users [26]. This model uses LOC (Lines of Code) as one of the estimation variables, whereas Fenton et. al

[27] explored the shortfalls of the LOC measure as an estimation variable. The COCOMO also uses FP (Function Point) as

one of the estimation variables, which is highly dependent on development the uncertainty at the input level of the

58 Bhawana Srivastava & Manoj Wadhwa

COCOMO yields uncertainty at the output, which leads to gross estimation error in the effort estimation [33]. Irrespective

of these drawbacks, COCOMO II models are still influencing in the effort estimation activities due to their better accuracy

compared to other estimation schemes.

Table 3: Effort Multipliers

Attribute Type Description

RELY Product Required system reliability

CPLX Product Complexity of system modules

DOCU Product Extent of documentation required

DATA Product Size of database used

RUSE Product Required percentage of reusable components

TIME Computer Execution time constraint

PVOL Computer Volatility of development platform

STOR Computer Memory constraints

ACAP Personnel Capability of project analysts

PCON Personnel Personnel continuity

PCAP Personnel Programmer capability

PEXP Personnel Programmer experience in project domain

AEXP Personnel Analyst experience in project domain

LTEX Personnel Language and tool experience

TOOL Project Use of software tools

SCED Project Development schedule compression

SITE Project
Extent of multisite working and quality of

inter-site communications

Table 4: Scale Factors

Factor Explanation

Precedentedness (PREC) Reflects the previous experience of the organization

Development Flexibility (FLEX) Reflects the degree of flexibility in the development process.

Risk Resolution (RESL) Reflects the extent of risk analysis carried out.

Team Cohesion (TEAM) Reflects how well the development team knows each other and work together.

Process maturity (PMAT) Reflects the process maturity of the organ

 The Detailed COCOMO Model: The detailed model differs from the Intermediate model in only one major

aspect: the detailed model uses different Effort Multipliers for each phase of a project. These phase dependent

Effort Multipliers yield better estimates than the Intermediate model. The six phases COCOMO defines are:

Table 5: Phases Table

Abbreviation Phase

RQ Requirements

PD Product Design

DD Detailed Design

CT Code & Unit Test

IT Integrate & Test

MN Maintenance

The phases from Product Design through Integrate & Test are called the Development phases. Estimates for the

Requirements phase and for the Maintenance phase are performed in a different way than estimates for the four

Development phases. The Programmer Capability cost driver is a good example of a phase dependent cost driver. The

Very High rating for the Programmer Capability Cost Driver corresponds to an Effort Multiplier of 1.00 (no influence) for

the Product Design phase of a project, but an Effort Multiplier of 0.65 is used for the Detailed Design phase. These ratings

indicate that good programmers can save time and money on the later phases of the project, but they don't have an impact

on the Product Design phase because they aren't involved.

Relative Analysis of Software Cost and Effort Estimation Techniques 59

Example: A distributed Management Information System (MIS) product for an organization having offices at

several places across the country can have the following sub-components:

 Database part

 Graphical User Interface (GUI) part

 Communication part

Of these, the communication part can be considered as Embedded software. The database part could be Semi-

detached software, and the GUI part Organic software. The costs for these three components can be estimated separately,

and summed up to give the overall cost of the system.

SLIM Estimation Model: SLIM Software Life-Cycle Model was developed by Larry Putnam [28]. SLIM hires the

probabilistic principle called Rayleigh distribution between personnel level and time. SLIM is basically applicable for large

projects exceeding 70,000 lines of code.

Figure 2: The Rayleigh Curve for SLIM

It makes use of Rayleigh curve referred from [14] as shown in figure 1 for effort prediction. This curve represents

manpower measured in person per time as a function of time. It is usually expressed in personyear/ year (PY/YR). It can be

expressed as:

 𝐝𝐲

𝐝𝐭
 =2 𝐊𝐚𝐭𝐞 -2at2

dy/dt is the manpower utilization per unit time, “ t” is the elapsed time, “a” is the parameter that affects the shape

of the curve and “K” is the area under the curve. There are two important terms associated with this curve:

 Manpower Build up given by D0=K/td3

 Productivity = Lines of Code/ Cumulative Manpower i.e.P=S/E and S= CK1/3 td 4/3,where C is the technology

factor which reflects the effects of various factors on productivity such as hardware constraints, program

complexity, programming environment and personal experience.

The SLIM Model Uses Two Equations: the software the manpower equation and software productivity level

equation The SLIM model uses Rayleigh distribution to estimate to estimate project schedule and defect rate. Two key

attributes used in SLIM method are productivity Index (PI) and Manpower Build up Index (MBI). The PI is measure of

process efficiency (cost-effectiveness of assets), and the MBI determines the effects on total project effort that result from

variations in the development schedule [A Probabilistic Model].

Inputs Required: To use the SLIM method, it is necessary to estimate system size, to determine the technology

factor, and appropriate values of the manpower acceleration. Technology factor and manpower acceleration can be

calculated using similar past projects. System size in terms of KDSI is to be subjectively estimated. This is a disadvantage,

60 Bhawana Srivastava & Manoj Wadhwa

because of the difficulty of estimating KDSI at the beginning of a project and the dependence of the measure on the

programming language.

Completeness of Estimate: The SLIM model provides estimates for effort, duration, and staffing information for

the total life cycle and the development part of the life cycle. COCOMO I provides equations to estimate effort, duration,

and handles the effect of re-using code from previously developed software. COCOMO II provides cost, effort, and

schedule estimation, depending on the model used (i.e., depending on the degree of product understanding and marketplace

of the project). It handles the effect of reuse, reengineering, and maintenance adjusting the used size measures using

parameters such as percentage of code modification, or percentage of design modification.

Assumptions: SLIM assumes the Rayleigh curve distribution of staff loading. The underlying Rayleigh curve

assumption does not hold for small and medium sized projects. Cost estimation is only expected to take place at the start of

the design and coding, because requirement and specification engineering is not included in the model.

Complexity: The SLIM model‟s complexity is relatively low. For COCOMO the complexity increases with the

level of detail of the model. For COCOMO I the increasing levels of detail and complexity are the three model types: basic,

intermediate, and detailed. For COCOMO II the level of complexity increases according to the following order:

Application Composition, Early Design, Post Architecture.

Automation of Model Development: The Putnam method is supported by a tool called SLIM (Software Life-

Cycle Management). The tool incorporates an estimation of the required parameter technology factor from the description

of the project. SLIM determines the minimum time to develop a given software system. Several commercial tools exist to

use COCOMO models.

Application Coverage: SLIM aims at investigating relationships among staffing levels, schedule, and effort. The

SLIM tool provides facilities to investigate trade-offs among cost drivers and the effects of uncertainty in the size estimate.

Generalizability: The SLIM model is claimed to be generally valid for large systems. COCOMO I was

developed within a traditional development process, and was a priori not suitable for incremental development. Different

development modes are distinguished (organic, semidetached, embedded). COCOMO II is adapted to feed the needs of

new development practices such as development processes tailored to COTS, or reusable software availability. No

empirical results are currently available regarding the investigation these capabilities.

Comprehensiveness: Putnam‟s method does not consider phase or activity work breakdown. The SLIM tool

provides information in terms of the effort per major activity per month throughout development. In addition, the tool

provides error estimates and feasibility analyses. As the model does not consider the requirement phase, estimation before

design or coding is not possible. Both COCOMO I and II are extremely comprehensive. They provide detailed activity

distributions of effort and schedule. They also include estimates for maintenance effort, and an adjustment for code re-use.

COCOMO II provides prototyping effort when using the Application Composition model. The Architectural Design model

involves estimation of the actual development and maintenance phase. The granularity is about the same as for

COCOMO I.

Non Algorithmic Methods

Contrary to the Algorithmic methods, methods of this group are based on analytical comparisons and inferences.

For using the Non Algorithmic methods some information about the previous projects which are similar the under estimate

project is required and usually estimation process in these methods is done according to the analysis of the previous

Relative Analysis of Software Cost and Effort Estimation Techniques 61

datasets. Here, three methods have been selected for the assessing because these methods are more popular than the other

None Algorithmic methods and many papers about their usage have been published in the recent years (Idri, Mbarki et al.

2004; Braz and Vergilio 2006; Li, Xie et al. 2007; Keung, Kitchenham et al. 2008; Li, Lin et al. 2008; Jianfeng, Shixian et

al. 2009; Jorgensen, Boehm et al. 2009.

 Analogy: It means creating estimates for new projects by comparing the new projects to similar projects from the

past. As the algorithmic techniques have a disadvantage of the need to calibrate the model. So, the alternative

approach is “analogy by estimation”. But it requires considerable amount of computation. This process is much

simple. But not all organizations have historical data to satisfactorily use analogy as means of estimation. ISBSG

(International Software benchmarking Standards Group) maintains and exploits a repository of International

Software Project Metrics to help software and IT business customers with project estimation; risk analysis,

productivity, and benchmarking [25].

 Expert Judgment: Estimation based on Expert judgment is done by getting advices from experts who have

extensive experiences in similar projects. This method is usually used when there is limitation in finding data and

gathering requirements. Consultation is the basic issue in this method. One of the most common methods which

work according to this technique is Delphi. Delphi arranges an especial meeting among the project experts and

tries to achieve the true information about the project from their debates.[25] Delphi includes some steps:

o The coordinator gives an estimation form to each expert.

o Each expert presents his own estimation (without discussing with others)

o The coordinator gathers all forms and sums up them (including mean or median) on a form and ask

experts to start another iteration.

o Steps (ii-iii) are repeated until an approval is gained.

Figure shows an example of using Delphi technique in which eight experts contributed and final convergence was

determined after passing four stages.

Figure 3: An example of Using Delphi

Parametric Models

Use effort drivers representing characteristics of the target system and the implementation environment used to

predict the new effort. In the top-down approach, model is used to produce overall estimation using effort driver. And

bottom-up approach is no past project data is available, and then we use the parametric model. Here break project into

smaller and smaller components. Estimate costs for the lowest level activities and using lowest level calculate the higher

level estimation. This model based on historical data about the software project. It will find the time factors affecting the

62 Bhawana Srivastava & Manoj Wadhwa

project to complete the time and effort estimation. The parameters are the personnel, programmer skill set, tools to develop

a software and reuse factors.

An estimation method is classified as „Framework based‟ when the following 2 characteristics are satisfied.

 A defined technique is integrated within the method.

 A history of similar projects is integrated within the method.

Brake Down Estimation [30]

In this method, the total project work is divided into several minute components and estimation is done at the

level of components. There can be 3 different types of estimation methods possible depending on how we map the

productivity measures into the estimation process.

 Complex Productivity Estimation: The following steps are adopted to arrive at an estimate in the case of

„Complex Productivity‟ estimation method.

o The System or the project work is divided into „n‟ no. of components.

o For each component, no. of test cases required to test is estimated. The total no. of test cases required is

divided further into 3 levels of complexities HIGH, MEDIUM and LOW. There will be standard

definitions available to classify a test case into these 3 categories at the project, domain or technology

level.

o There is a productivity table available giving „Effort / Test case‟ ratio for each Component-Complexity

combination. This table is derived out of historical data and will have an effort value for each of the

complexities of test case against each component in the system.

o The testing effort of a component is the sum-product of effort values of different complexity levels and

the no. of test cases in each complexity level.

o The testing effort of the total system is the sum of testing efforts of all components.

This method is applicable when the components in a system are of widely varied nature which necessitates

complexity definitions and analysis at the component level rather than at the system level.

 Simplex Productivity Estimation: The following steps are adopted to arrive at an estimate in the case of

„Simplex Productivity‟ estimation method. The first two steps are similar to that of Complex Productivity

estimation.

o There is a productivity table giving „Effort / Test case‟ ratio for each of the Test case complexity level.

This table is derived out of historical data and will have an effort value for each of the complexity levels

of test case wrt the over-all system.

o The testing effort of a component is the sum-product of effort values of different complexity levels and

the no. of test cases in each complexity level.

o The testing effort of the system is the sum of testing efforts of all components.

This method is applicable where we have LOW test case equivalent formulae available for medium and high test

case complexities.

Relative Analysis of Software Cost and Effort Estimation Techniques 63

 Simple Productivity Estimation: The following steps are adopted to arrive at an estimate in the case of „Simple

Productivity‟ estimation method. The first two steps are similar to Complex Productivity estimation.

o There is a productivity table giving „Effort / Test case‟ ratio for LOW complexity Test cases. This table

is derived out of historical data. The table will have an effort value for low complexity test case wrt the

over-all system.

o The estimate for a component is arrived as follows: Determine the LOW, MEDIUM and HIGH

complexity test cases for the component. From this the equivalent LOW complexity test case count is

calculated. The testing effort for the component is the product of „Effort / Test Case‟ ratio as in step 3

and the equivalent LOW test case count.

o The testing effort of the system is the sum of testing efforts of all components.

This method is applicable where we have LOW test case equivalent formulae available for medium and high test

case complexities. By tweaking the method a little bit, the estimator can be given the freedom for putting a range of LOW

equivalent TCs for say Medium complexity to get a very close approximation to the reality in the case of a particular

component. For example, even if the historic table mentions that the MEDIUM / LOW ratio is 1.5, the estimator can put a

value of 1.45 for a particular component to have a close approximation in the case of a project in hand.

Machine Learning Model

During the last two decades researchers have been focused on exploring a new approach using AI based

techniques for accurate effort estimation. This approach uses ML a sub field of AI.

It is difficult to determine which technique gives more accurate result on which dataset. However, a lot of

research has been done in Machine learning techniques of estimation and Literature suggests that ML methods are capable

of providing adequate estimation models as compared to the traditional models especially in GSD projects [11]-[22].

ML algorithms offer a practical alternative to the existing approaches to many SE issues.

Figure 4: Relation between ML and Software Engineering

During last two decades Artificial Intelligence based models are attracting researcher‟s attention for the estimation

of software parameters. In 1995 [23] have compared AI based techniques with traditional COCOMO, Function Point

Analysis and Software Lifecycle Management (SLIM) and concluded that AI models are viable to traditional methods.

Authors of the paper [24] have concluded that AI based models are capable of providing acceptable estimation models.

 Below we will describe some commonly used methods of ML for measuring effort and in the next section we

will compare these methods, so that this paper may help the practitioners and researchers in the selection of suitable effort

estimation methods. Commonly used ML methods for measuring effort in GSD projects are as follows:

64 Bhawana Srivastava & Manoj Wadhwa

Artificial Neural Network (ANN): ANN is a computational or mathematical model that is stimulated by the biological

human brain. Through learning process ANN can be configured for a specific application, such as pattern recognition or

data classification. ANNs include the two basic components of biological neural networks that are Neurons (nodes) and

Synapses (weights). A neuron has a set of n (number neurons in previous layer) synapses (inputs), which are characterized

by n different weight (free parameters).[24]

Feed-Forward Neural Network (FFNN)

Many neurons are used in the construction of an FFNN; these neurons are connected with each other through

specific network architecture. The primary goal of the FFNN is to transform the inputs into meaningful outputs. There is

no self loop or backward feed in this network [24].

Back propagation neural network is the best selection for software estimation problem because it adjusts the

weights by comparing the network outputs and actual results. In addition, training is done effectively. Majority of

researches on using the neural networks for software cost estimation, are focused on modeling the Cocomo method, for

example in (Attarzadeh, Ow, 2010) a neural network has been proposed for estimation of software cost according to the

following figure. Scale Factors (SF) and effort multipliers (EM) are input of the neural network, pi and qj are respectively

the weight of SFs and EMs.[32]

Fuzzy Method: All systems, which work based on the fuzzy logic try to simulate human behavior and reasoning. In many

problems, which decision making is very difficult and conditions are vague, fuzzy systems are an efficient tool in such

situations. This technique always supports the facts that may be ignored. There are four stages in the fuzzy approach:

Stage 1: Fuzzification: to produce trapezoidal numbers for the linguistic terms.

Stage 2: To develop the complexity matrix by producing a new linguistic term.

Stage 3: To determine the productivity rate and the attempt for the new linguistic terms.

Stage 4: Defuzzification: to determine the effort required to complete a task and to compare the existing method.

COMPARISON OF THE ESTIMATION METHODS

This section compares the mentioned estimation methods based on these advantages and disadvantages. This

comparison con be useful for choosing an appropriate method in a particular project in a particular environment. Selection

of the estimation technique is based on capabilities of methods and state of the project.

This table explains that many models are present but all are dependent on different environments and needs of the

companies. But in all methods maximum LOC and FPA play the main or basic role for estimation.

We cannot always estimate by these so different kinds of factors included in estimation techniques are based on

statistics, predictions like regression, expert‟s contribution, historical data sets, and Neural Network and Fuzzy logics.

Seer-SEM and SLIM model are easy to implement by machine learning methods but lots of calculation and training is

required which is not feasible for all situations.

These models are used in large organisations like for manufacturing, hardware, electronics and systems, trading

and so on. The use of models not only depends upon factors of the methods but also upon the companies or organisation.

Table 6 shows a comparison of mentioned methods for estimation. For making a comparison, the popular existing

estimation methods have been selected.

Relative Analysis of Software Cost and Effort Estimation Techniques 65

Table 6: Comparison of the Existing Methods

Sr.No Method Type Advantages Disadvantages

1 LOC Algorithmic
Very easy in implementation to

estimate the size of software

Prediction of line is tough in early stage,

not good for very large project and

Language dependent

2
Functional

point
Algorithmic

Applied early in SDLC.GUI

based, better than LOC, language

free

Lots of judgement involved, start after

the design specification, Less research

data is available on function

3 SEER-SEM Algorithmic Used in very large projects
50 input parameters are required which

increased the complexity and uncertainty

4
Basic

COCOMO
Algorithmic

Basic COCOMO is good for

quick, early, rough order of

magnitude estimates of software

costs, commonly used in small

projects, compatible for assemble

language to PL/I.

Not used in large projects where size is

greater than 10000. Accuracy is limited.

Its prediction is .25 which is quite poor

5
COCOMO

II
Algorithmic

It provides more support for

modern software development

processes and an updated project

database. Provide support to

mainframe, code reusability and

batch processing.

It cannot estimate the effort at all the

different phases of SDLC. Its prediction

is .68 which is quite good.

6
Detailed

COCOMO
Algorithmic

Phase Sensitive effort multipliers

are each to determine the amount

of effort required to complete

each phase.

Lots of parameters involved in estimation

time complexity is high. Its prediction is

.70 which is good.

7
Linear

model
Algorithmic

It is a best method of prediction

using linear regression technique

Little difference between actual and

predicted result and error is also need to

calculate.

8 SLIM Algorithmic
A Probabilistic Model, Used in a

very large project
For only large projects

9
Expert

Judgment

Non-

Algorithmic

Fast prediction, Adapt to especial

projects

Its success depend on expert, Usually is

done incomplete

10 Analogy
Non-

Algorithmic

Works based on actual

experiences, having especial

expert is not important

A lots of information about past projects

is required, In some situations there are

no similar project

11

Complex

productivity

model

Parametric

It is useful when components in a

system are of widely varied in

nature

In it analysis is done at component level

rather than at the system level.

12

Simplex

productivity

model

Parametric

This method is applicable when

the components in a system are of

similar nature

Extra intervention of experts is required

to determine the effort values of High,

Medium and Low complexity test cases

at the system level.

13

Simple

productivity

model

Parametric

This method is applicable where

we have LOW test case equivalent

formulae available for medium

and high test case complexities.

Expert or Estimator can predict the

approximate values by the help of

historical dataset.

14
Neural

Networks

Machine

learning

model

Consistent with unlike databases,

Power of reasoning

There is no guideline for designing, The

performance depends on large training

data

15 Fuzzy

Machine

learning

model

Training is not required,

Flexibility

Hard to use, Maintaining the degree of

meaningfulness is difficult

CONCLUSIONS

Based upon the background readings and some pronounced case studies of companies, it is found that the existing

models are highly credible; however, this survey states that this is not so. All the models cannot predict the actual either

against the calibration data or validation data to any level of accuracy or consistency. Surprisingly, SEER and machine

66 Bhawana Srivastava & Manoj Wadhwa

learning techniques are reliable and good at predicting the effort. These days, all the leading organisations are using their

proprietary effort estimation software or automated software tools for conducting estimations and thus do not require

complete estimation techniques for the estimation. Now companies conduct market survey and understand customer‟s

requirement and according to that they state their requirements to developers and then developers analyze the customer

requirement and customise the existing software, update the software requirement, append some new modules into the

software and so on. For this, they use some kind of mix of estimation techniques which are based on some of these models.

This varies from company to company as to what project they mostly deals with and according to that they create

their own software for the estimation through which they get correct estimation for the projects however, the existing

models are not so accurate because they lie in the term prediction; prediction never comes true is proved in this estimation

models. In all the models, the two key factors that influence the estimate are project size either in terms of LOC or FP and

the capabilities of the development team personnel. Finally, this paper concludes that many good techniques and methods

exist which can suffice in different situations but none is best and suitable for every type of situation or requirement. Thus

there is a need for an adequate mix and use of these techniques according to the changing requirement so as to provide the

best estimation.

REFERENCES

1. Albrecht.A.J. and J. E. Gaffney, “Software function, source lines of codes, and development effort prediction: a

software science validation”, IEEE Trans Software Eng. SE,pp.639-648, 1983

2. Ali Idri, Alain Abran, Taghi M. Khosgoftaar. 2001. “Fuzzy Analogy- A New Approach for Software Cost

Estimation”. International Workshop on Software Measurement (IWSM‟01).

3. Allan J. Alberecht and John E. Gaffhey, November 1983, “Software Function, Source Lines of Code and

Development Effort Prediction : A software Science Validation” . IEEE transactions on Software Engineering.

4. Allan J. Alberecht, May 1984. “AD/M Productivity Measurement and Estimation Validation, IBM Corporate

Information Systems”. IBM Corp.

5. Attarzadeh,I. Siew Hock Ow, “Proposing a New Software Cost Estimation Model Based on Artificial Neural

Networks”,IEEE International Conference on Computer Engineering and Technology (ICCET) , Volume: 3,

Page(s): V3-487 - V3-491 2010.

6. Attarzadeh, I. Siew Hock Ow, “Improving the accuracy of software cost estimation model based on a new fuzzy

logic model”,World Applied science journal 8(2):117-184,2010-10-2.

7. Banker, R. D., H. Chang, et al. (1994). "Evidence on economies of scale in software development". Information

and Software Technology .

8. Bergeron, F. and J. Y. St-Arnaud (1992). “Estimation of information systems development efforts: a pilot study".

Information and Management 22(4): 239-254.

9. Boehm, B. W. and P. N. Papaccio (1988). “ Understanding and controlling software costs”. IEEE Transactions

on Software Engineering 14(10): 1462-1477.

10. Boehm, C Abts, and S Chulani. "Software Development Cost Estimation Approaches – A Survey”, Technical

Report USC-CSE- 2000-505", University of Southern California – Center for Software Engineering, USA,

(2000).

Relative Analysis of Software Cost and Effort Estimation Techniques 67

11. B.W. Boehm, “Software Engineering Economics,” Prentice Hall, 1981.

12. B.W. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece, A. W. Brown, S. Chulani, and C. Abts,

“Software Cost Estimation with COCOMO II,” Prentice Hall, 2000.

13. Capers Jones, Chief Scientist Emeritus Software Productivity Research LLC. . How Software Estimation Tools

Work. Version 5 – February 27, 2005Charles Symons 1991.

14. Capers Jones, “ Software Sizing and Estimation Mark II function Points (Function Point Analysis)”, Wiley 1991.

15. Chatzoglou, P. D. and L. A. Macaulay (1998). "A rule-based approach to developing software development

.estimation using computational intelligence techniques". Nature & Biologically Inspired Computing, NaBIC

2009. World Congress on,2009.

16. Chiu NH, Huang SJ, “The Adjusted Analogy-Based Software Effort Estimation Based on Similarity Distances,”

Journal of Systems and Software, Volume 80, Issue 4, pp 628-640, 2007

17. Chintala Abhishek, Veginati Pavan Kumar, Harish Vitta, Praveen Ranjan Srivastava, “ Test Effort Estimation

Using Neural Network”, J. Software Engineering & Applications, 2010, 3: 331-340

18. Heiat A, “Comparison of Artificial Neural Network and Regression Models for Estimating Software Development

Effort,” Journal of Information and Software Technology, Volume 44, Issue 15, pp 911-922, 2002

19. Huang SJ, Lin CY, Chiu NH, “Fuzzy Decision Tree Approach for Embedding Risk Assessment Information into

Software Cost Estimation Model,” Journal of Information Science and Engineering, Volume 22, Number 2, pp

297–313, 2006

20. Huang Kaczmarek J, Kucharski M, “Size and Effort Estimation for Applications Written in Java,” Journal of

Information and Software Technology, Volume 46, Issue 9, pp 589-60, 2004

21. Jovan Popovic and Dragan Bojic, “A Comparative Evaluation of Effort Estimation Methods in the Software Life

Cycle”, Com SIS Vol. 9, No. 1, January 2012

22. Jorgen M, Sjoberg D.I.K, “The Impact of Customer Expectation on Software Development Effort Estimates”

International Journal of Project Management, Elsevier, pp 317-325, 2004

23. Jeffery R, Ruhe M,Wieczorek I, “Using Public Domain Metrics to Estimate Software Development Effort,” In

Proceedings of the 7
th

 International Symposium on Software Metrics, IEEE Computer Society, Washington, DC,

pp 16–27, 2001.

24. Mamoona Humayun and Cui Gang, “Estimating Effort in Global Software Development Projects Using Machine

Learning Techniques”, International Journal of Information and Education Technology, Vol. 2, No. 3, June 2012.

25. P.K. Suri, Pallavi Ranjan, “Comparative Analysis of Software Effort Estimation Techniques, International Journal

of Computer Applications (0975 – 8887) Volume 48– No.21, June 2012.

26. Rathi.j,Kamalraj. R , Karthik. S, “Survey on Effective Software Effort Estimation Techniques” International

Journal of Advanced Research in Computer Engineering & Technology (IJARCET) ISSN: 2278 – 1323, Volume

1, Issue 8, October 2012

27. R. Jensen, “An improved macrolevel software development resource estimation model”. In 5th ISPA Conference,

pp 88–92, 1983.

68 Bhawana Srivastava & Manoj Wadhwa

28. Saleem Basha, Dhavachelvan P, “Analysis of Empirical Software Effort Estimation Models”, (IJCSIS)

International Journal of Computer Science and Information Security,Vol. 7, No. 3, 2010

29. Satyananda, “An Improved Fuzzy Approach for COCOMO’s Effort Estimation Using Gaussian Membership

Function” Journal of Software, vol 4, pp 452-459, 2009.

30. S. chulani, B. Boehm, and B. Steece, “Bayesian Analysis of Emperical Software Engineering Cost Models,” IEEE

Trans. Software Eng., vol.25, no. 4, pp.573-583, 1999.

31. Sikka, G., A. Kaur, et al. “Estimating function points: Using machine learning and regression models". Education

Technology and Computer (ICETC), 2nd International Conference on,2010.

32. Vahid Khatibi, Dayang N. A. Jawawi, “ Software Cost Estimation Methods: A Review”, Journal of Emerging

Trends in Computing and Information Sciences , Volume 2 No. 1 ,ISSN 2079-8407.

33. Vu Nguyen, Bert Steece, Barry Boehm “A Constrained Regression Technique for COCOMO Calibration”

ESEM‟08, ACM, pp 213-222, 2008.

34. Wei Lin Du, Danny Ho, Luiz Fernando Capretz , “ Improving Software Effort Estimation Using Neuro-Fuzzy

Model with SEER-SEM”,Global Journal of Computer Science and Technology Vol. 10 Issue 12 (Ver. 1.0)

October 2010.

35. Yinhuan, Z., W. Beizhan, et al. "Estimation of software projects effort based on function point". Computer

Science & Education. ICCSE. 4th International Conference on,2009.

36. Ziauddin, Shahid Kamal Tipu, Shahrukh Zia, “An Effort Estimation Model for Agile Software Development”

Advances in Computer Science and its Applications (ACSA) Vol. 2, No. 1, 2012, ISSN 2166-2924.

